The relative impact of microstimulation parameters on movement generation.
نویسندگان
چکیده
Microstimulation is widely used in neurophysiology to characterize brain areas with behavior and in clinical therapeutics to treat neurological disorder. Current intensity and frequency, which respectively influence activation patterns in spatial and temporal domains, are typically selected to elicit a desired response, but their effective influence on behavior has not been thoroughly examined. We delivered microstimulation to the primate superior colliculus while systematically varying each parameter to capture effects of a large range of parameter space. We found that frequency was more effective in driving output properties, whereas properties changed gradually with intensity. Interestingly, when different parameter combinations were matched for total charge, effects on behavioral properties became seemingly equivalent. This study provides a first level resource for choosing desired parameter ranges to effectively manipulate behavior. It also provides insights into interchangeability of parameters, which can assist clinical microstimulation that looks to appropriately control behavior within designated constraints, such as power consumption.
منابع مشابه
Investigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملRestoring Motor Functions in Paralyzed Limbs through Intraspinal Multielectrode Microstimulation Using Fuzzy Logic Control and Lag Compensator
In this paper, a control strategy is proposed for control of ankle movement on animals using intraspinal microstimulation (ISMS). The proposed method is based on fuzzy logic control. Fuzzy logic control is a methodology of intelligent control that mimics human decision-making process. This type of control method can be very useful for the complex uncertain systems that their mathematical model ...
متن کاملEntropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid
The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...
متن کاملInfluence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires
In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2012